
Introducing EqArgSolver

An argumention solver using

equational semantics

Odinaldo Rodrigues

The First International Workshop on

Systems and Algorithms for Formal Argumentation

13 September 2016

Department of Informatics

King’s College London

Outline of the talk

1. Background

2. The Discrete Schema

3. EqArgSolver Implementation Details

4. Evaluation Against GRIS

5. Conclusions and Future Work

Introduction

EqArgSolver is a solver for solving argumentation semantics

problems using the equational semantics.

EqArgSolver is developed as a self-contained C++ application.

EqArgSolver is the successor of GRIS, submitted to the First

International Competition on Computational Models of

Argumentation.

The Gabbay-Rodrigues Iteration Schema

In “Equilibrium States in Numerical Argumentation Networks”,

Gabbay and Rodrigues introduced the following iteration schema:

The Gabbay-Rodrigues Iteration Schema

Let 〈S ,R〉 be an argumentation framework; V0 be an assignment

of values from [0, 1] to S ; and MAi (X) = maxY∈Att(X){Vi (Y)}

Vi+1(X) = (1− Vi (X)) ·min {1/2, 1−MAi (X)}+

Vi (X) ·max {1/2, 1−MAi (X)}

Using the Gabbay-Rodrigues Iteration Schema

Using the correspondence:

V (X) = 0 ⇔ X is out

0 < V (X) < 1 ⇔ X is und

V (X) = 1 ⇔ X is in

The schema corrects “illegal” initial values in two stages:

1. Turn every illegal initial value in {0, 1} into the undecided

range

2. Correct every remaining illegal undecided value

Example One

Consider the argumentation framework:

a1a2

a3

b c d

e

arg V0 V2 V∞

a1 0.6 0.648 0.5

a2 0.5 0.344 0.5

a3 0.3 0.075 0.5

b 0.8 0.677 0.5

c 0.2 0.322 0.5

d 0 0.75 1

e 1 0.5 0

V2 gives the largest admissible labelling whose “crisp” part is

included in V0’s

V∞ (iteration 70) gives a complete extension

Example Two

Consider the argumentation framework:

V∞

a1a2

a3

b c d

e

arg V0 V2 V∞

a1 1 0.35 0

a2 0 0 0

a3 1 0.5 1

b 1 1 1

c 0 0 0

d 0.5 0.875 1

e 0.2 0.375 0

The down-admissible labelling of V0, a1, a3, d , e = und,

b = in a2, c = out, is achieved at iteration 2.

V∞ (iteration 81) gives a complete (preferred, stable)

extension

Example Two

Consider the argumentation framework:

V∞

a1a2

a3

b c d

ea1a2

a3

b c d

e

arg V0 V2 V∞

a1 1 0.35 0

a2 0 0 0

a3 1 0.5 1

b 1 1 1

c 0 0 0

d 0.5 0.875 1

e 0.2 0.375 0

The down-admissible labelling of V0, a1, a3, d , e = und,

b = in a2, c = out, is achieved at iteration 2.

V∞ (iteration 81) gives a complete (preferred, stable)

extension

Properties

Properties of the Schema

The schema will compute the minimal complete labelling

containing an initial admissible labelling

Given the all-und initial labelling, the schema will compute

the ground labelling of the network

The schema can also be used to propagate solutions through

the network in the correct way

The above properties supported the use of the schema in the solver

GRIS.

Disadvantages of the Schema for Use in Solvers

Finding the limit values of the sequence required a large number of

complex computations:

In GRIS, approximation continued until machine precision

exhausted

Computations involve floating-point operations

◦ more computationally complex

◦ require more memory storage

The Discrete Gabbay-Rodrigues Iteration Schema

In “Further Applications of the Gabbay-Rodrigues Iteration

Schema in Argumentation and Revision Theories”, Gabbay and

Rodrigues introduced a simplified version of the schema:

The Discrete Gabbay-Rodrigues Iteration Schema

Let 〈S ,R〉 be an argumentation framework and V0 be an assign-

ment of values from {0, 1
2 , 1} to S .

Vi+1(X) = 1−maxY∈Att(X){Vi (Y)}

The Discrete Gabbay-Rodrigues Iteration Schema

Cannot be used with arbitrary initial values, but for initial values 1
2 :

Properties of the Schema

The schema will converge and compute the ground labelling

of the network

The schema can also be used to propagate solutions through

the network in the correct way

The discrete version replaces the full-fledged version in the solver

EqArgSolver.

Advantages of the Discrete Schema for Use in Solvers

No need for approximation

Equilibrium values found in time t ≤ # nodes in the

component

By shifting from {0, 1
2 , 1} to {0, 1, 2}:

◦ Computations only involve integer operations

◦ Can be done natively using 8-bit integers

Example One (Discrete)

a1a2

a3

b c d

e

arg V0 V2

a1 0.5 0.5

a2 0.5 0.5

a3 0.5 0.5

b 0.5 0.5

c 0.5 0.5

d 0.5 1

e 0.5 0

Grounded extension computed in two iterations!

Example Two (Discrete) - Propagating Values

Consider the argumentation framework:

V3

a1a2

a3

b c d

e

Layer 0

Layer 1

arg V0 V3

a1 0.5 0

a2 0.5 0

a3 0.5 1

b 1 1

c 0 0

d 1 1

e 0 0

partial solution

S1 to Layer 0

We can also apply the schema to a single SCC with conditioning

values coming from a partial solution to previous layers

Example Two (Discrete) - Propagating Values

Consider the argumentation framework:

V3

a1a2

a3

b c d

ea1a2

a3

b c d

e

Layer 0

Layer 1

arg V0 V3

a1 0.5 0

a2 0.5 0

a3 0.5 1

b 1 1

c 0 0

d 1 1

e 0 0

partial solution

S1 to Layer 0

partial solution

to Layer 1 for

solution S1

We can also apply the schema to a single SCC with conditioning

values coming from a partial solution to previous layers

Data Representation

EqArgSolver is implemented in C++ (standard c++11). It is

self-contained and no external libraries are used.

The graph is internally represented in the following way:

A node is internally identified by an unsigned int (16 bits)

A value is stored as an unsigned char (8 bits)

Attacks out of a node and into a node are stored as vectors of

node identifiers

A “solution” is a map between node identifers and node values

Execution Pattern

input problem
input

graph

Validator
Tarjan

Layering

Argument

Acceptability

checker

Partial

preferred

solutions

Preferred

solutions

generator
GR Grounder Layers

Yes/No Extensions

problem

specification graph file

valid problem

and graph

SCCs/

layers

layer

SCCs

base

solutions

undecided

nodes

previous layer

solutions

argument

partial

solutions

base

solutions

partial

solutionspartial

preferred

solution

result no more layers

Execution Pattern

Execution Pattern

The input problem and graph are initially validated

The graph is then divided into SCCs and the SCCs arranged

into layers

For each partial solution, each new layer, and each component
in the layer

◦ The GR grounder is invoked

◦ If after propagation there are undecided nodes left and the

problem is in the preferred semantics, the preferred

solutions generator is invoked

◦ The partial solutions are combined

The process repeats until all layers have been processed or a

solution has been found

Preferred Solution Generator

The preferred solution generator uses a modified version of
Caminada and Modgil’s algorithm for finding preferred labellings.

When a SCC is left with undefined arguments, these arguments are

initialised with the value in

The algorithm is invoked, generating all preferred solutions to the

SCC

The solutions are then combined “horizontally” and “vertically”

with the other solutions to give an update set of solutions

If a solution to the input problem is found, the process stops

otherwise, it restarts with the next layer and solutions just found

S. Modgil and M. Caminada, Proof Theories and Algorithms for

Abstract Argumentation Frameworks, Argumentation in Artificial

Intelligence, pp. 105-129, 2009.

Evaluation Against GRIS

Average execution times for enumeration (L) and decision problems

(R) in graphs generated using probo’s Grounded generator

 0

 200

 400

 600

 800

 1000

 1200

 1400

S
E
-G

R

E
E
-G

R

S
E
-P

R

E
E
-P

R

A
v
g
 T

im
e
 (

m
s)

Enumeration Problems

GRIS
EqArgSolver

 0

 200

 400

 600

 800

 1000

 1200

 1400

D
C

-G
R

D
S
-G

R

D
C

-P
R

D
S
-P

R

A
v
g
 T

im
e
 (

m
s)

Grounded Decision Problems

GRIS
EqArgSolver

Graphs generated by probo’s SCC and Stable generators

(L) shows comparative times for the EE and SE enumeration

problems in the grounded semantics and (R) shows the

comparative times for the DC and DS decision problems in the

preferred semantics.

 0

 50

 100

 150

 200

 250

S
C

C
 S

E
-G

R

S
C

C
 E

E
-G

R

S
T
 S

E
-G

R

S
T
 E

E
-G

R

A
v
g
 T

im
e
 (

m
s)

SCC and Stable Enumeration Problems

GRIS
EqArgSolver

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

S
C

C
 D

S
-P

R

S
C

C
 D

C
-P

R

S
T
 D

C
-P

R

S
T
 D

S
-P

R

A
v
g
 T

im
e
 (

m
s)

SCC and Stable Decision Problems

GRIS
EqArgSolver

Conclusions

EqArgSolver was developed from scratch in C++ and is

completely self-contained

It does not use any external libraries or a SAT solver

It employs the discrete version of the GR schema, which offers

a significant performance improvement over the full-fledged

version used in GRIS

The discrete version is much more economical in terms of

memory requirements (1
8 -th of GRIS’)

Conclusions

We have not yet been able to compare the performance gain

against the other solvers in ICCMA’15

The algorithm for finding preferred extensions is the current

bottleneck in the performance of the solver

EqArgSolver cannot yet handle the complete and stable

semantics

Future Work

We have devised a numerical algorithm to replace Modgil and

Caminada’s preferred extensions algorithm

This new algorithm can produce intermediate extensions, so it

will allow EqArgSolver to address problems in the complete

semantics

Nodes in a SCC left with undecided values flag failure of a

solution to produce a stable extension, the search can be

discontinued there

The solver can be easily parallelised

	Background
	The Discrete Schema
	EqArgSolver Implementation Details
	Evaluation Against GRIS
	Conclusions and Future Work

