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Argument graph

An argument graph is a couple G = (A,R) such that
A is a finite set of arguments
R ⊆ A×A represents a notion of attack between
arguments

Example

c -b a-
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Semantics

A semantics gives a formal definition of a method ruling the
argument evaluation process.

Argument + Semantics σ =⇒ Acceptable sets of
graph arguments (σ-extensions)
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Semantics: underlying principles

Given an argument graph G = (A,R):

conflict-freeness: a set S ⊆ A is conflict-free iff
∀a ∈ S ∀bRa b 6∈ S.
admissibility: a set S ⊆ A satisfies admissibility iff ∀a ∈ S,
∀b such that bRa,∃c ∈ S such that cRb.
reinstatement: a set S ⊆ A satisfies reinstatement iff
∀bRa, it there exists c ∈ S such that cRb, then a ∈ S.
inclusion-maximality: a set of extensions E is
inclusive-maximal iff ∀E1,E2 ∈ E , if E1 ⊆ E2 then E1 = E2.
. . .
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Semantics: combining principles

Existing semantics are defined as combinations of these
underlying principles:

Conflict-freeness and admissibility
→ Admissible semantics

Conflict-freeness and admissibility and reinstatement
→ Complete semantics

inclusion-maximality w.r.t. (conflict-freeness and
admissibility)
→ Preferred semantics

. . .

Why not combining these principles differently?
Why not using more principles to define semantics?
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Encoding

Given any semantics σ, how to capture the σ-extensions of an
argument graph G = (A,R) in propositional logic?

=⇒ Either by providing a formula whose models characterize
the σ-extensions of G

=⇒ Or by providing a formula σ(A,R),S depending on a subset
S ⊆ A, that is satisfiable if and only if S is a σ-extension of
(A,R)
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Encoding

Encoding rule

An encoding is of the form

σ(A,R),S = ϕS ∧ ϕS ∧ΨS

where:
ϕS encodes the necessary conditions for membership in S

ϕS =
∧
a∈S

ϕ(a∈S)

ϕS encodes the sufficient conditions

ϕS =
∧
a 6∈S

¬ϕ(a∈S)

ΨS is a Boolean combination over building blocks
(intuitively, ΨS expresses that S enjoys σ)
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Encoding semantic principles

Encodings proposals of the principles underlying the semantics
(building blocks):

Conflict-freeness ∧
x<y

¬(ϕ(x∈S) ∧ ϕ(y∈S))

Admissibility ∧
y<x

(ϕ(x∈S) →
∨
z<y

(ϕ(z∈S)))

Reinstatement∧
x∈A

((
∧
bRa

∨
cRb

ϕ(c∈S))→ ϕ(a∈S))
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Encoding semantic principles

Encodings proposals of the principles underlying the semantics
(building blocks):

Inclusion-maximality of a set S w.r.t. some combination of
principles ΨS

ΨS ∧
∧

S⊆Y∈2A

(
ΨY →

∧
a∈A

(ϕ(a∈Y ) → ϕ(a∈S))

)
. . .
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Use case

Given an argument graph G = (A,R), a complete extension
S ⊆ A is a conflict-free set that satisfies admissibility and
reinstatement.

What is σ(A,R),S?

1 Capturing conflict-freeness∧
x<y ¬(ϕ(x∈S) ∧ ϕ(y∈S))

2 Capturing admissibility∧
y<x (ϕ(x∈S) →

∨
z<y (ϕ(z∈S)))

3 Capturing reinstatement∧
x∈A((

∧
bRa

∨
cRb ϕ(c∈S))→ ϕ(a∈S))

4 Combining the three properties, by conjoining them
(formula ΨS)

5 Conjoining ΨS with ϕS ∧ ϕS
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Use case

Given an argument graph G = (A,R), a complete extension
S ⊆ A is a conflict-free set that satisfies admissibility and
reinstatement.

If ϕ(x∈S) is the atom x :

σ(A,R),S =

(∧
x∈S x

)
∧
(∧

x 6∈S ¬x
)
∧
(∧

x<y ¬
(

x ∧ y
))

∧
(∧

y<x

(
x →

∨
z<y z

))
∧
(∧

x∈A

((∧
y<x

∨
z<y z

)
→ x

))

Example

c -b a-

σ(A,R),{c} = c ∧ ¬a ∧ ¬b ∧ ¬(c ∧ b) ∧ ¬(b ∧ a) ∧(b → ⊥)
∧(a→ c) ∧c ∧ (⊥ → b) ∧ (c → a) is not satisfiable: {c} is not a
complete extension of G
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SESAME

Software that allows combining the principles, using a
semi-natural interface, and that outputs a parameterized
propositional formula that captures the combination.
Based on a grammar for the combination of the principles

http://www.irit.fr/SESAME
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SESAME

Allows capturing existing semantics, including:
grounded, complete, preferred, stage, semi-stable, ideal

=⇒ See demo on SESAME website for the complete semantics

Allows characterizing brand new semantics, which are
such that a set S is an extension under these semantics iff,
for instance:

No graph sinks are in S (ignoring isolated nodes, i.e. nodes
that do not attack any argument are not in S)
Each argument that attacks S but is not attacked by S is
self-attacking

=⇒ See demos on SESAME website
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Conclusion

Argumentation semantics
Captured by a formula depending on an S ⊆ A, which is
satisfiable iff S is an extension under the semantics of
(A,R)
Encoding of principles underlying the definition of the
semantics, in propositional logic

SESAME
tool that allows specifying argumentation semantics
captures various existing semantics
brand new semantics can also be specified
provides a logical encoding in the form of a parameterized
formula

Future work
Automatic instantiation of the formula on a given (A,R) and
a given S ⊆ A
Use of a SAT solver to check the satisfiability of the
instantiated formula
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